The Ocular Hypertension Treatment Study (OHTS)

Supported by the National Eye Institute, National Center on Minority Health and Health Disparities, Research to Prevent Blindness, and Merck Research Laboratories

Ocular Hypertension

- Elevated IOP in the absence of clinically detectable optic nerve or visual field changes
- A common finding
- What to do?
 - -Treat all?
 - -Treat no one?
 - -Treat some? Then who?

Why did we do this study?

Don't we know that treatment prevents open angle glaucoma?

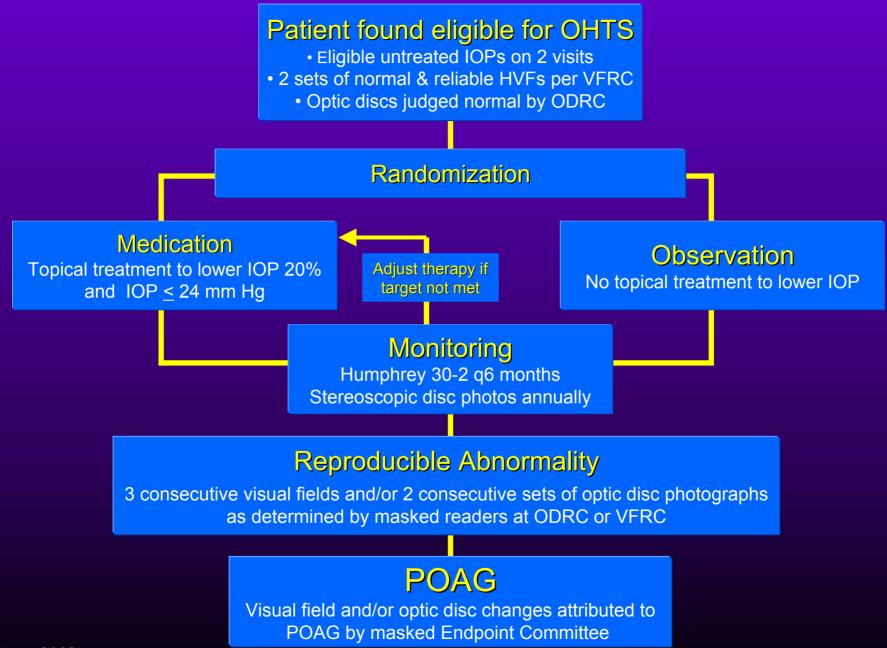
Does Treatment of Ocular Hypertension prevent POAG?

Investigator	Protective
Graham	no
Norskov	no
Levene	no
David <i>et al.</i>	no
Chisholm	no
Schulzer <i>et al.</i>	no
Heijl <i>et al.</i>	no
Kamal <i>et al.</i>	no

Investigator	Protective
Becker & Morton	yes
Shin <i>et al.</i>	yes
Kitazawa	yes
Epstein <i>et al.</i>	yes
Kass <i>et al.</i>	yes

Limitations of previous studies:

- Varying endpoints
- Limited treatment regimens
- Small sample size


Ocular Hypertension Treatment Study (OHTS) Primary Goals

 Evaluate the safety and efficacy of topical ocular hypotensive medication in delaying or preventing the development of POAG in individuals with elevated IOP

 Identify baseline demographic and clinical factors that predict which participants will develop POAG

The OHTS Entry Criteria

- Age 40 80
- Normal visual fields
 - Humphrey 30-2
- Normal optic discs
- Untreated IOP:
 - 24 to 32 mmHg in qualifying eye
 - 21 to 32 mmHg in fellow eye

June, 2002

Baseline Characteristics by Randomization Group Gender & Age

	Medication n=817	Observation n=819
Male	43.9%	42.2%
Female	56.1%	57.8%

Ages	40 to 50	35.6%	35.0%
	> 50 to 60	33.0%	31.6%
	> 60 to 70	24.7%	25.6%
	> 70 to 80	6.6%	7.7%

Baseline Characteristics by Randomization Group Self-designated Race

	Medication n=817	Observation n=819
Native American	0.1%	0.4%
Asian	0.5%	1.2%
African American	25.0%	25.0%
Hispanic	2.9%	4.3%
Caucasian	70.6%	68.4%
Other	1.0%	0.7%

Baseline Characteristics by Randomization Group Ophthalmic Measurements

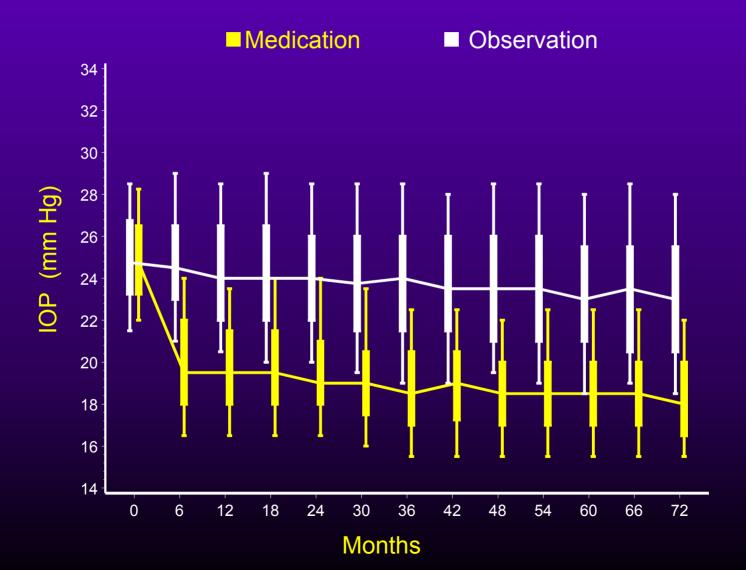
	Medication n=817 (mean ± S.D.)	Observation n=819 (mean ± S.D.)
IOP (mm Hg)	24.9 ± 2.6	24.9 ± 2.7
Cup:Disc Ratio (Horizontal)	0.36 ± 0.19	0.36 ± 0.18
Cup:Disc Ratio (Vertical)	0.39 ± 0.20	0.39 ± 0.19
Central Corneal Thickness (microns)*	570.5 ± 38.9	574.5 ± 37.7
Refraction (spherical equivalent in Diopters)	-0.67 ± 2.31	-0.60 ± 2.35

^{*} Overall n=1398 for central corneal thickness, n=699 (86%) per randomization group. Measurements were conducted after 1999, about 2 years after the last participant was randomized.

Baseline Characteristics by Randomization Group Visual Field Indices

	Medication n=817 (mean ± S.D.)	Observation n=819 (mean ± S.D.)
Mean Deviation (dB)	+0.27 ± 1.07	+0.21 ± 1.03
Pattern Standard Deviation (dB)	1.92 ± 0.21	1.90 ± 0.21
Corrected Pattern Standard Deviation (dB)	1.12 ± 0.34	1.12 ± 0.36

Baseline Characteristics by Randomization Group Possible Risk Factors

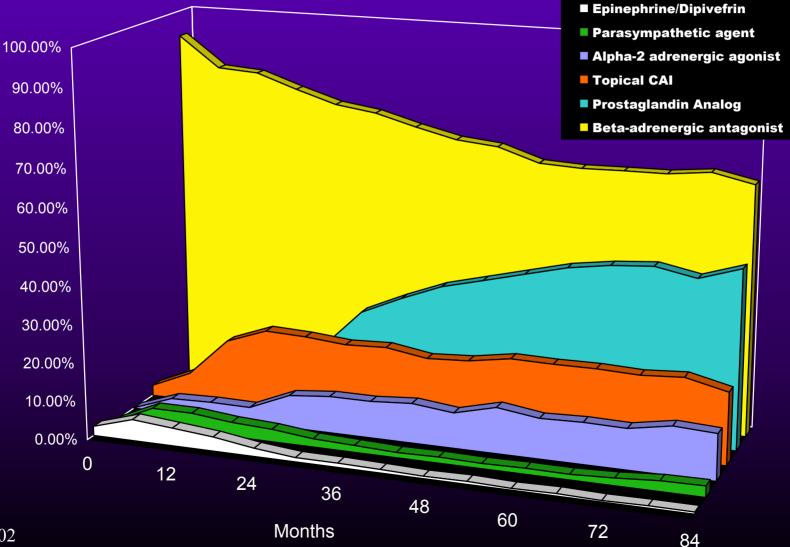

	Medication n=817	Observation n=819
Prior use of Ocular Hypotensive Medication	35.0%	39.3%
First Degree Family History of Glaucoma	34.0%	35.6%
Myopia 2 1 diopter Spherical Equivalent	34.4%	33.7%
Oral Beta Adrenergic Antagonist	5.4%	4.6%
Oral Calcium Channel Blocker	12.8%	14.0%

Baseline Characteristics by Randomization Group Medical History

	Medication	Observation
	n=817	n=819
Migraine	10.4%	11.7%
Diabetes	11.5%	12.1%
Hypertension	37.5%	38.1%
Low Blood Pressure	4.8%	4.0%
Cardiovascular Disease	5.8%	6.5%
Stroke	0.9%	1.6%

Box Plot of IOP by Randomization Group

Median IOP is joined by a line. Box: 25% and 75% Whiskers: 10% and 90%

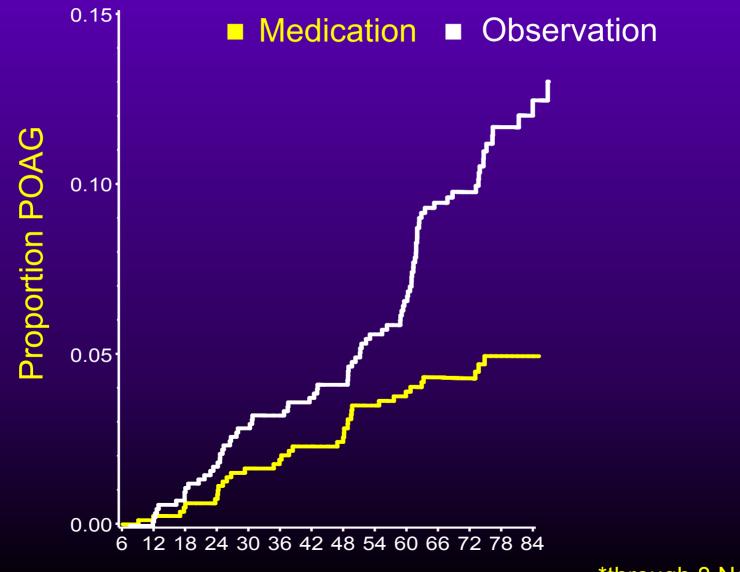


June, 2002

IOP By Race

	Medic	ation	Observation		
	African American			Other	
	n=203	n=614	n=205	n=614	
IOP at baseline	25.1 ± 2.9	24.9 ± 2.6	25.1 ± 2.8	24.9 ± 2.7	
IOP averaged over scheduled follow- up visits	19.3 ± 2.3	19.3 ± 2.1	23.9 ± 3.2	23.9 ± 2.8	
Percent reduction from baseline	-22.9 ± 10%	-22.4 ± 10%	-4.7 ± 13%	-3.8 ± 11%	

Percent of Medication Patients on Different Medications Patients may be on more than one medication

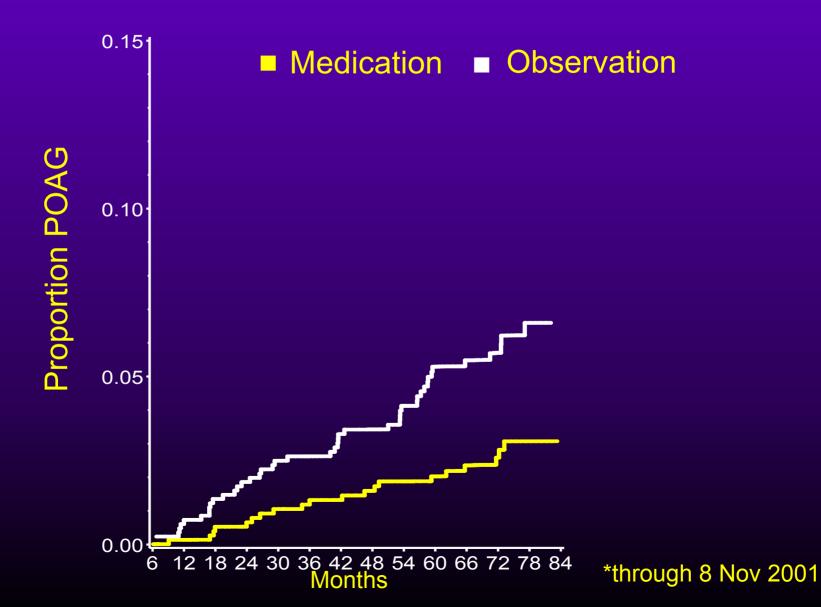


Progress and Outcome of Study Participants

	Medication		Observation		All	
	n	%	n	%	n	%
Randomized	817	100	819	100	1636	100
Died	26	3.2	29	3.5	55	3.4
Inactive	89	10.9	84	10.2	173	10.6
Non-adherence to randomization	40	4.9	42	5.1	82	5.0
Reproducible VF or Optic Disc abnormality due to any cause	81	9.9	137	16.7	218	13.3
Endpoints attributed to POAG	36	4.4	89	10.9	125	7.6

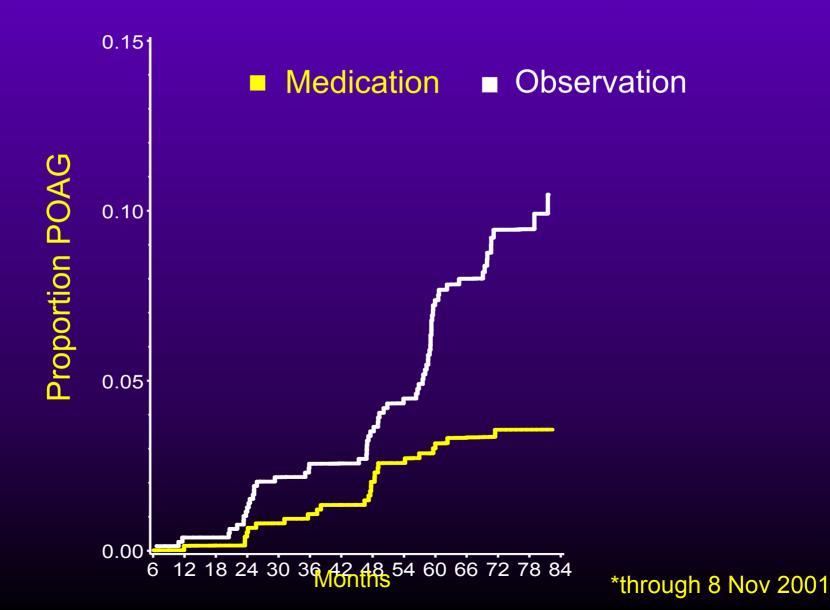
Log rank p<0.001

Primary POAG Endpoints* Log Rank P-value < 0.001, Hazard Ratio 0.40, 95% CI (0.27, 0.59)



June, 2002

Monthe


*through 8 Nov 200

1st Visual Field POAG Endpoint* Log Rank P-value=0.002, Hazard Ratio=0.45, 95% CI (0.26, 0.76)

June, 2002

1st Optic Disc POAG Endpoint* Log Rank P-value<0.001, Hazard Ratio 0.36, 95% CI (0.23, 0.56)

June, 2002

First POAG Endpoint per Participant

	Medic	cation	Observation	
	N %		Ν	%
Visual Field	15	41.7	29	32.6
Optic Disc	18	50.0	51	57.3
Concurrent Visual Field and Optic Disc	3	8.3	9	10.1
Total	36 100		89	100

All cause reproducible abnormalities in visual fields and/or optic discs were significantly reduced in medication group.

Hazard ratio 0.58, 95% CI (0.44-0.76)

P=0.00008

Treatment perhaps less protective in African Americans

African Americans

- 12.7% POAG
 endpoints in
 observation group
- 6.9% POAG endpoints in medication group
- Hazard Ratio 0.54
- P value for interaction 0.26

Others

- 10.2% POAG
 endpoints in
 observation group
- 3.6% POAG endpoints in medication group
- Hazard Ratio 0.34

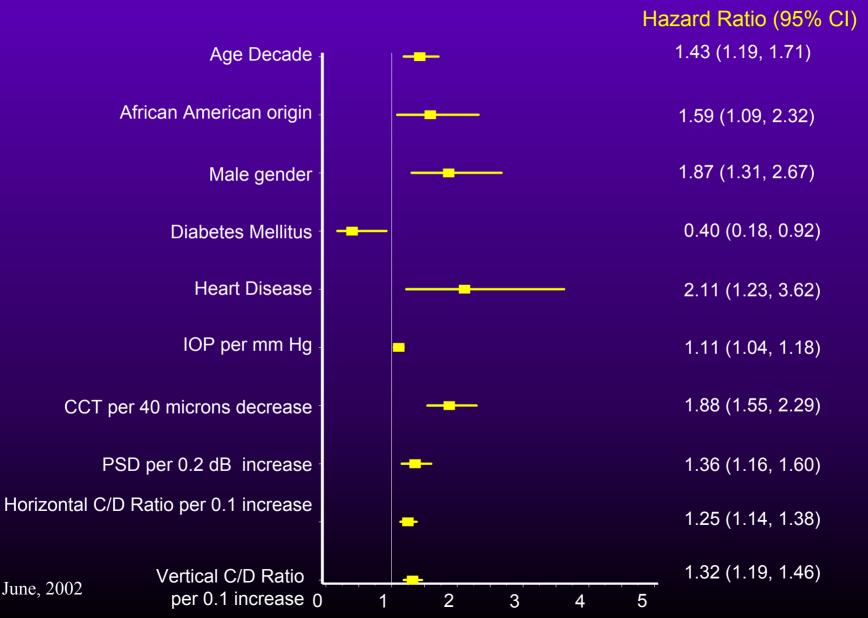
No Significant Safety Difference Between Randomization Groups

- Mortality
- Hospitalizations
- New Medical Conditions
- Worsening of Pre-existing Conditions
- ♦ SF 36/any subscale
- Patient Reported Ocular and Systemic Symptoms

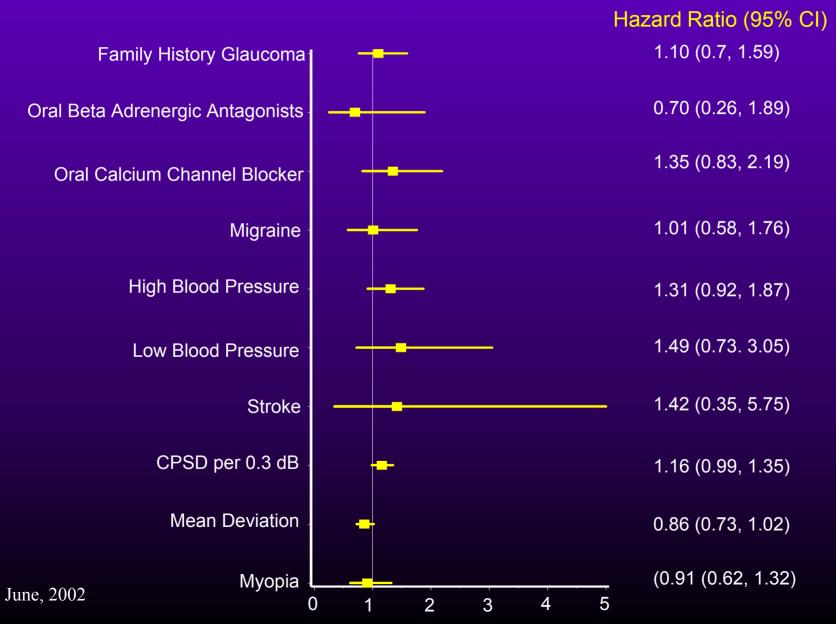
Percent Reporting Changes in Iris, Lids or Lashes

Prostaglandin analog > 6 months	17% —	
n = 380	1//0	P <0.001
Observation group	00/	
n = 631	8% —	

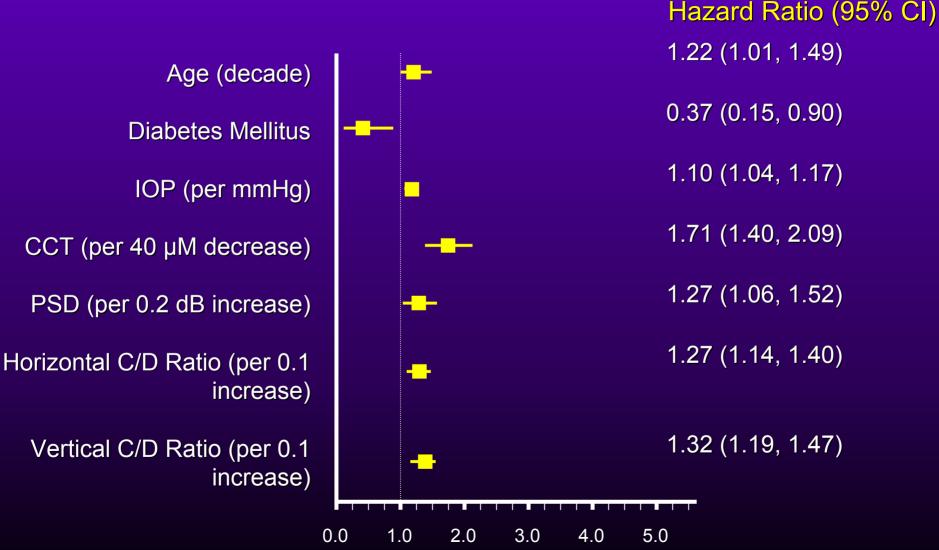
No difference between randomization groups in serious AEs for 9 of 11 organ systems.


Borderline Safety Differences Between Randomization Groups

Cataract surgery
Serious psychiatric adverse events
Serious genitourinary adverse events

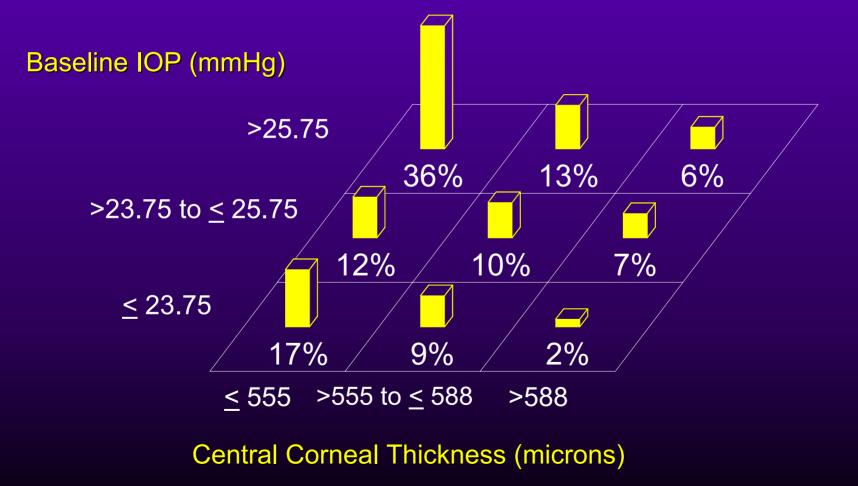

Summary

- Treatment produced about a 20% reduction in IOP.
- Treatment reduced incidence of POAG in OHT participants by more than 50% at 5 years from 9.5% in the Observation Group to 4.4 % in the Medication Group.
- Little evidence of safety concerns.


Significant Baseline Predictive Factors from Univariate Proportional Hazards Models

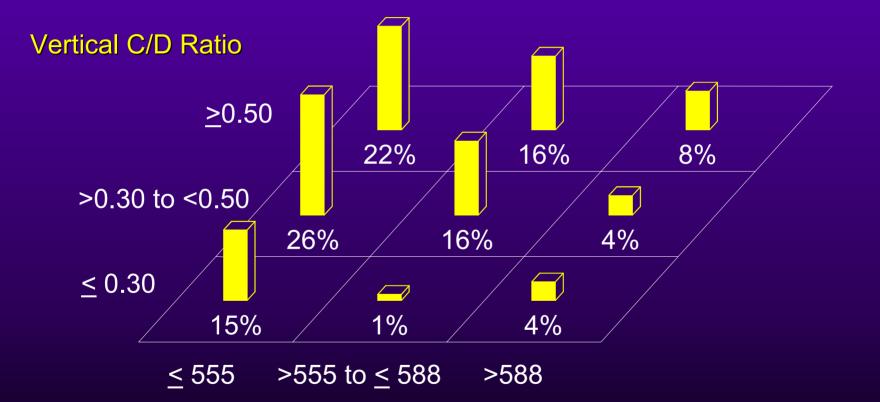
Non Significant Baseline Predictive Factors from Univariate Proportional Hazards Models

Significant Baseline Predictive Factors from Multivariate Proportional Hazard Models



June, $200\overline{2}$

 African Americans have a higher prevalence and incidence of POAG.


 OHTS data suggests that this racial effect may be due to thinner central corneas and larger cup/disc ratios.

POAG Endpoints by Central Corneal Thickness and Baseline IOP (mmHg) in Observation Group*

* through 8 Nov 2001

POAG Endpoints by Central Corneal Thickness and Baseline Vertical C/D Ratio in Observation Group*

Central Corneal Thickness (microns)

* through 8 Nov 2001

IOP 24 / 24
C/D ratio 0.1 vertical
Corneal thickness 600 μ Risk of POAG ~ 1% / 5 years

IOP 24 / 24
C/D ratio 0.3
Corneal thickness 540 μ Risk of POAG ~ 7% / 5 years



- ♦ C/D ratio
- Corneal thickness 600 μ
- Risk of POAG

~ 2% / 5 years

IOP 24 / 24
 C/D ratio 0.5
 Corneal thickness 490 μ
 Risk of POAG ~ 20% / 5 years

72-year-old BM

- 1. Large sample size
- 2. Careful follow-up
- 3. Masked assessment of endpoints
- 4. Attribution of endpoints to cause by masked committee
- 5. Inclusion of all commercially available drugs
- 6. Careful quality control and feedback to technicians and photographers
- 7. True-incidence cases

Weaknesses

- Convenience sample rather than population based
- 2. Relatively small number of POAG endpoints
- 3. Healthy volunteers
- 4. Limited IOP range
- 5. Limited to patients with reliable visual fields
- 6. "Squeaky clean" participants at baseline
- 7. High thresholds for endpoints
- 8. Some risk factors under-represented

Summary

 Not every patient with OHT should be treated
 Offer treatment to OHT patient at moderate to high risk taking into consideration:

Age
Medical status
Life expectancy
Likely treatment benefit

 Consider measuring corneal thickness in all patients with OHT or glaucoma.

Possible Misinterpretations of OHTS

- 1. Treat all patients with elevated IOP.
- 2. Risk of POAG is low in this population.
- 3. Glaucoma medications are harmless.
- 4. Risk factors for developing POAG are clearly delineated; influence of race, gender, hypertension, heart disease, family history, blood pressure, and diabetes are all clear.
- **5**. 20% lowering of IOP is the correct target for OHT.
- 6. Drug X is proven to prevent glaucoma in OHT.

OHTS Resource Centers

Study Chairman's Office & Coordinating Center Washington University St. Louis, MO

Optic Disc Reading Center Bascom Palmer Eye Institute University of Miami Miami, FL Visual Field Reading Center University of California, Davis Sacramento, CA

June, 2002

OHTS Clinical Centers

- Bascom Palmer Eye Institute
- Eye Consultants of Atlanta
- Eye Physicians and Surgeons
- Cullen Eye Institute
- Devers Eye Institute
- Emory Eye Institute
- Henry Ford Hospitals
- Johns Hopkins University
- Krieger Eye Institute
- Howard University
- University of Maryland
- University of California, Los Angeles
- Charles Drew University
- Kellogg Eye Center
- Kresge Eye Institute

- Great Lakes Eye Institute
- University of Louisville
- Mayo Clinic
- New York Eye & Ear Infirmary
- Ohio State University
- Ophthalmic Surgeons & Consultants
- Pennsylvania College of Optometry
- MCP/Hahnemann University
- Scheie Eye Institute
- University of California, Davis
- University of California, San Diego
- University of California, San Francisco
- University Suburban Health Center
- University of Ophthalmic Consultants
- Washington Eye Physicians & Surgeons
- Eye Associates of Washington, DC
- ✤ Washington University, St. Louis