Central Corneal Thickness in the Ocular Hypertension Treatment Study (OHTS)

James D. Brandt, M.D.
Mae O. Gordon, Ph.D.
Michael A. Kass, M.D.

for the
OHTS Investigators Group

The Ocular Hypertension Treatment Study Group (OHTS)
National Eye Institute, National Center for Minority Health and Health Disparities,
NIH grants EY09307, EY09341, EY02687, Unrestricted Grant from Research to Prevent Blindness, Merck Research Laboratories and Pfizer, Inc.
The OHTS is a prospective, randomized, multi-center trial designed to determine whether the medical lowering of IOP in patients with ocular hypertension is safe and effective in delaying or preventing the development of primary open-angle glaucoma.

In the OHTS, patients are randomly assigned to medical treatment or close observation.
Ocular Hypertension Treatment Study (OHTS)

Entry Criteria
- Age 40 - 80
- Normal VF
ts
- Normal Optic Discs
- Untreated IOP:
 - 24 - 32 mmHg in qualifying eye
 - 21 - 32 in fellow eye

OHTS Demographics
- Enrollment complete in 10/96
- 1,636 subjects at 23 clinical centers
- 409 (25%) African-American
Goldmann applanation assumes a corneal thickness (CT) of 500 µM.

Argus (1995) demonstrated that CT was greater in ocular hypertensives than in either normals or POAG patients.

Herndon (1997) measured CT in 184 eyes:
- 561 ± 26 µM among normals
- 554 ± 22 µM among POAG patients
- 606 ± 41 µM among ocular hypertensives (p<0.001)
Aims of Present Study

- Describe the corneal thickness of the subjects enrolled in the OHTS
- Determine if corneal thickness is related to:
 - Race
 - IOP
 - Age
 - Gender
 - Medical status (e.g., diabetes, hypertension)
Methods

- Matching ultrasonic pachymeters provided to each clinical center
- 5 measurements of central corneal thickness from each eye
- Data transmitted to OHTS Coordinating Center (St. Louis)
Methods

Quality Control
- Repeat measurements required for inter-eye difference $\geq 40 \mu M$
- Repeat measurements in 63 subjects at one site (UC Davis) to determine test-retest reliability

Data Analysis
- One eye randomly chosen from each subject
- SAS v6.0
 - T-test and Pearson correlations
 - Multivariate general linear analysis
Results

- 1,099 (69%) of OHTS subjects have undergone corneal thickness measurements as of 8/30/2000

- High data quality
 - 0.9% with inter-eye difference ≥40 μM
 - (Repeat) - (initial measurement) = 11.0 ± 13.7 μM

- 1,094 measurements available for analysis
Results

<table>
<thead>
<tr>
<th></th>
<th>African-American</th>
<th>Others</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N = 85</td>
<td>548.2 ± 42.4 µM</td>
<td>N = 375</td>
<td>N = 460</td>
</tr>
<tr>
<td>N = 188</td>
<td>557.3 ± 38.6 µM</td>
<td>N = 446</td>
<td>N = 634</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N = 273</td>
<td>554.5 ± 40.0 µM</td>
<td>N = 821</td>
<td>N = 1,094</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N = 273</td>
<td>554.5 ± 40.0 µM</td>
<td>N = 821</td>
<td>N = 1,094</td>
</tr>
</tbody>
</table>

Difference between African-American and ‘Others’ subjects

p<0.0001
Distribution of Corneal Thickness (all OHTS subjects)

- <=500: 3%
- 501-525: 8%
- 526-550: 19%
- 551-575: 24%
- 576-600: 23%
- 601-625: 15%
- >625: 8%

Corneal thickness (µM)
Corneal Thickness by Race

<table>
<thead>
<tr>
<th>Corneal Thickness (µM)</th>
<th>African American</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td><=500</td>
<td>1%</td>
<td>9%</td>
</tr>
<tr>
<td>501-525</td>
<td>6%</td>
<td>13%</td>
</tr>
<tr>
<td>526-550</td>
<td>17%</td>
<td>24%</td>
</tr>
<tr>
<td>551-575</td>
<td>23%</td>
<td>27%</td>
</tr>
<tr>
<td>576-600</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>601-625</td>
<td>15%</td>
<td>18%</td>
</tr>
<tr>
<td>>625</td>
<td>4%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Legend:
- Other
- African American
Corneal Thickness vs. Baseline IOP

<table>
<thead>
<tr>
<th></th>
<th>Af-Am</th>
<th>Oth</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>120</td>
<td>353</td>
</tr>
<tr>
<td>75 %tile</td>
<td>583.9</td>
<td>605.6</td>
</tr>
<tr>
<td>Median</td>
<td>553</td>
<td>576.6</td>
</tr>
<tr>
<td>25 %tile</td>
<td>534.5</td>
<td>550</td>
</tr>
<tr>
<td>Af-Am</td>
<td>89</td>
<td>301</td>
</tr>
<tr>
<td>75 %tile</td>
<td>573.6</td>
<td>602</td>
</tr>
<tr>
<td>Median</td>
<td>556.6</td>
<td>580.2</td>
</tr>
<tr>
<td>25 %tile</td>
<td>531.6</td>
<td>553.6</td>
</tr>
<tr>
<td>Af-Am</td>
<td>47</td>
<td>130</td>
</tr>
<tr>
<td>75 %tile</td>
<td>591</td>
<td>603.6</td>
</tr>
<tr>
<td>Median</td>
<td>552.4</td>
<td>576.4</td>
</tr>
<tr>
<td>25 %tile</td>
<td>527</td>
<td>550.4</td>
</tr>
<tr>
<td>Af-Am</td>
<td>17</td>
<td>37</td>
</tr>
<tr>
<td>75 %tile</td>
<td>555.8</td>
<td>594.4</td>
</tr>
<tr>
<td>Median</td>
<td>533.2</td>
<td>575.8</td>
</tr>
<tr>
<td>25 %tile</td>
<td>518.4</td>
<td>546.8</td>
</tr>
</tbody>
</table>
Other Relationships

- **Baseline refraction** (N = 1,090)
 - r = -0.09, p = 0.0018

- **Gender**
 - Female 574.7 ± 38.7 μM; Male 569.3 ± 39.2 μM (p = 0.02)

- **Diabetes**
 - Diabetic (N = 117): 580.2 ± 42.0 μM
 - Non-diabetic (N = 974): 571.5 ± 38.5 μM (p = 0.02)

- **Age at time of measurement**
 - r = -0.16, p < 0.001
Multivariate Analysis

- The multivariate model included race, gender, age at testing, baseline refraction, baseline IOP, baseline medical history and the interaction of race with gender, systemic hypertension and diabetes.

- Significant relationships:
 - Race ($p < 0.001$)
 - Age ($p < 0.0001$)
 - Gender ($p = 0.014$)
 - Diabetes ($p = 0.0016$)

- Baseline refraction, Baseline IOP, systemic hypertension and the racial interactions were not statistically significant in the multivariate model.
What is “Normal” Corneal Thickness?

- A recent meta-analysis* of the corneal thickness literature found that mean corneal thickness of ‘normal’ eyes is 534 µM
 - 530 µM for optical pachometry
 - 544 µM for ultrasonic pachymetry

- Our study demonstrates that subjects in the OHTS have increased corneal thickness (572.4 ± 39 µM)

* Doughty & Zaman (2000)
Survey of Ophthalmology 44:367-408
Race and Corneal Thickness

- Most previous studies of corneal thickness have been performed in racially homogeneous populations
- Foster (1998) found thinner corneas (495 μM) in a Mongolian population
- Our study demonstrates that African-American OHTS subjects have thinner corneas than their ‘others’ counterparts
Correcting IOP for Corneal Thickness

- Ehlers (1975) cannulated 29 eyes undergoing cataract surgery
 - 5 mmHg/70 µM
- Doughty & Zaman (2000) meta-analysis
 - 2.5 mmHg/50 µM
- Whitacre (1993) and the Rotterdam Eye Study (1997)
 - 2.0 mmHg/100 µM
Baseline IOP

- Unadjusted
“Corrected” IOP

- Unadjusted
- Whitacre

% of Subjects

mmHg
“Corrected” IOP

- Unadjusted
- Whitacre
- Doughty

% of Subjects

mmHg

0 5 10 15 20 25 30 35 40
Clinical Significance

- 45% of ‘others’ had a ‘corrected’ IOP < 21 mmHg
- 27.5% of African-American subjects had a ‘corrected’ IOP < 21 mmHg

If we choose an arbitrary cutoff of 600 µM, above which corneal thickness affects applanation IOP measurement to a clinically significant degree, then:
 - 28% of ‘Others’ had corneal thickness > 600 µM
 - 12% of African Americans had corneal thickness > 600 µM
Conclusions

- OHTS subjects have thicker corneas than ‘normal’ subjects
- African-American OHTS subjects have thinner corneas than their ‘others’ counterparts
- Corneal thickness must be considered in the development of any risk model for ocular hypertensive patients
OHTS Clinical Centers

- Bascom Palmer Eye Institute
- Baylor Eye Clinic
- Charles R. Drew University
- Devers Eye Institute
- Emory University Eye Center
- Eye Associates of Washington, DC
- Eye Consultants of Atlanta
- Eye Doctors of Washington
- Eye Physicians and Surgeons of Atlanta
- Glaucoma Care Center
- Great Lakes Ophthalmology
- Henry Ford Hospitals
- Johns Hopkins University
- Jules Stein Eye Institute, UCLA
- Kellogg Eye Center
- Kresge Eye Institute
- Krieger Eye Institute
- Maryland Center for Eye Care
- Mayo Clinic/Foundation
- New York Eye & Ear Infirmary
- Ohio State University
- Salus University
- Scheie Eye Institute
- University of California, Davis
- University of California, San Diego
- University of California, San Francisco
- University of Louisville
- University Suburban Health Center
- Washington Eye Physicians & Surgeons
- Washington University, St. Louis
OHTS Resource Centers

Study Chairman’s Office
&
Coordinating Center
Washington University
St. Louis, MO

Optic Disc Reading Center
Bascom Palmer Eye Institute
University of Miami
Miami, FL

Visual Field Reading Center
University of California, Davis
Sacramento, CA