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Predicting Glaucoma before Onset Using
Deep Learning
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Purpose: To assess the accuracy of deep learning models to predict glaucoma development from fundus
photographs several years before disease onset.

Design: Algorithm development for predicting glaucoma using data from a prospective longitudinal study.
Participants: A total of 66 721 fundus photographs from 3272 eyes of 1636 subjects who participated in the

Ocular Hypertension Treatment Study (OHTS) were included.
Main Outcome Measures: Accuracy and area under the curve (AUC).
Methods: Fundus photographs and visual fields were carefully examined by 2 independent readers from the

optic disc and visual field reading centers of the OHTS. When an abnormality was detected by the readers, the
subject was recalled for retesting to confirm the abnormality and for further confirmation by an end point com-
mittee. By using 66 721 fundus photographs, deep learning models were trained and validated using 85% of the
fundus photographs and further retested (validated) on the remaining (held-out) 15% of the fundus photographs.

Results: The AUC of the deep learning model in predicting glaucoma development 4 to 7 years before
disease onset was 0.77 (95% confidence interval [CI], 0.75e0.79). The accuracy of the model in predicting
glaucoma development approximately 1 to 3 years before disease onset was 0.88 (95% CI, 0.86e0.91). The
accuracy of the model in detecting glaucoma after onset was 0.95 (95% CI, 0.94e0.96).

Conclusions: Deep learning models can predict glaucoma development before disease onset with
reasonable accuracy. Eyes with visual field abnormality but not glaucomatous optic neuropathy had a higher
tendency to be missed by deep learning algorithms. Ophthalmology Glaucoma 2020;-:1e7 ª 2020 by the
American Academy of Ophthalmology. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Although most of the application of deep learning models
has been centered around glaucoma diagnosis for the
screening purposes, the aim of our study is to evaluate the
utility of deep learning models for prediction of glaucoma
from color fundus photographs well before the manifesta-
tion of the clinical signs. We hypothesize that deep learning
models, such as models that we propose, can uncover
clinical and subclinical glaucoma-induced signs that may
lead to improving our understanding of mechanisms un-
derlying glaucoma.

Glaucoma is a heterogeneous group of disorders that
represents the second leading cause of blindness overall,
affecting up to 91 million individuals worldwide.1,2

Glaucoma has multiple known risk factors, including older
age, African-American ethnicity, elevated intraocular pres-
sure (IOP), and thinner central corneal thickness.3,4

However, subjects with 1 or more of these risk factors
may or may not develop glaucoma, making an accurate
prediction challenging.5 Because glaucoma can be
asymptomatic, its detection before significant vision loss is
critical.6 Thus, methods for predicting glaucoma could
have a significant impact on public health.

Dilated fundus photography provides a convenient and
inexpensive means for recording optic nerve head structure,
and glaucomatous optic neuropathy (GON) assessment
remains a gold standard for indicating the presence of
glaucoma.7,8 However, manual assessment of the optic disc
through fundus photographs for glaucoma screening
requires significant clinical training, is highly subjective
with currently limited agreement regarding results even
among glaucoma specialists, and is labor intensive for
application to the general population.9,10 Recent advances
in artificial intelligence and deep learning models along
with significant growth in available methods to record
fundus photographs have shown promise and allowed the
development of objective systems to assess the optic nerve
head through fundus photographs, thus leading to
enhanced glaucoma diagnosis (Norouzifard M, Nemati A,
GholamHosseini H, et al. Automated glaucoma diagnosis
using deep and transfer learning: proposal of a system for
clinical testing. Paper presented at: 2018 International
Conference on Image and Vision Computing New
Zealand (IVCNZ). November 19-21, 2018, Auckland,
New Zealand).11-14

Deep learning models require large clinically annotated
training datasets to learn promising features from the im-
ages. Learning from data has advantages over predefined
assumptions and rules to build the knowledge in machine
learning classifiers. Several studies have shown that deep
learning models can identify disease-induced signs to
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Figure 1. Flowchart of glaucoma identification and labeling. The eye is labeled as glaucoma based on glaucomatous optic neuropathy (GON) or visual field
abnormality. Reading center assignment should be further confirmed by an end point committee. Three datasets were selected from fundus photographs
based on glaucoma onset date of each eye: 1 dataset for glaucoma diagnosis and 2 datasets for glaucoma prediction.
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diagnose disease or identify the severity of disease from
ophthalmic images with high accuracy in ocular conditions
such as diabetic retinopathy, age-related macular degener-
ation, and glaucoma.13,15-19 Integrating deep learning
models into portable fundus photography cameras or general
practice may provide automated assessment of ocular con-
ditions such as glaucoma and has a significant potential for
providing affordable screening of at-risk populations and
improving access to care.
Methods

Participants and Data

The fundus photographs of this study were obtained from the
Ocular Hypertension Treatment Study (OHTS) after signing the
data use agreement and receiving Institutional Review Board
approval. The study was conducted according to the tenets of
Helsinki. All participants provided informed consent. The OHTS
was a prospective, multicenter investigation (22 centers across the
United States) that sought to prevent or delay the onset of visual
field loss in patients with elevated IOP (at moderate risk of
developing glaucoma). All risk factors were measured at the
baseline before disease onset and were collected for approximately
16 years (phases 1 and 2). Thus, the longitudinal basis of the OHTS
dataset allows development of models for predicting glaucoma
before disease onset.

A total of 66 721 fundus photographs from 3272 eyes of
1636 subjects with normal-appearing optic disc and normal
visual field at the baseline visit were included. Ocular mea-
surements and fundus photographs were collected every year
2

over the course of the study. Details of the OHTS and the
procedure for identifying glaucoma have been outlined in
another study.20 Figure 1 illustrates how fundus photographs
were labeled and 3 datasets that we generated from a pool of
66 721 fundus photographs for developing 3 different deep
learning models for the detection and prediction of glaucoma.
Because of visual field variability, 2 repeated abnormal visual
fields were required by the reading center to label the eye as
glaucoma. The entire process was reviewed further by an
independent end point committee.

The first dataset included 45 379 fundus photographs from
nonglaucoma (throughout this article, nonglaucoma refers to eyes
with elevated IOP but normal structure and visual field, as defined in
the OHTS) eyes and eyes with glaucoma. Of 45 379 fundus photo-
graphs, 41 298were from nonglaucoma eyes and the remaining 4081
photographs were from eyes with glaucoma (determined on the basis
of GON or visual field abnormality). We called this the diagnosis
dataset (Fig 2, red arrow shows the time points of corresponding
fundus photographs). From 4081 fundus photographs from eyes
with glaucoma, approximately 29% of these fundus photographs
were labeled as glaucoma due to GON without any visual field
abnormality, 22% of the photographs were labeled as glaucoma
due to visual field abnormality without any evidence of GON, and
49% of photographs were labeled as glaucoma due to existence of
both GON and visual field abnormality.

The second dataset included 42 601 fundus photographs from
nonglaucoma eyes and eyes that eventually converted to glaucoma
after approximately 1 to 3 years. We called this the “late prediction”
dataset. The late prediction dataset includes 41 298 fundus photo-
graphs from nonglaucoma eyes and 1303 fundus photographs from
eyes that converted to glaucoma after 1 to 3 years (Fig 2, yellow arrow
shows the time points of corresponding fundus photographs).
The third dataset included 42 498 fundus photographs from



Figure 2. Eyes without any signs of GON or visual field abnormality were followed for approximately 10 years, and fundus photographs were collected
annually. The onset time represents when a sample eye was identified as glaucoma based on GON or visual field abnormality. The green arrow corresponds
to fundus photographs collected 4 to 7 years before the date of glaucoma onset, the yellow arrow represents fundus photographs that were collected 1 to 3
years before the date of glaucoma conversion, and the red arrow corresponds to fundus photographs collected on or after the time that glaucoma onset was
identified.
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nonglaucoma eyes and eyes that eventually converted to glaucoma
after approximately 4 to 7 years. We called this the “early
prediction” dataset. The early prediction dataset included 41 298
fundus photographs from nonglaucoma eyes and 1200 fundus
photographs from eyes that eventually developed glaucoma after
approximately 4 to 7 years (Fig 2, green arrow shows the time
points of corresponding fundus photographs). The same set of
fundus photographs obtained from nonglaucoma eyes were used in
all 3 datasets. We developed 3 different deep learning models using
fundus photographs from these 3 datasets to assess the accuracy of
models in predicting and detecting glaucoma.

Train, Test, and Validation Datasets

We first selected 15% of the data for the final validating
(retesting). We then selected the rest of 85% of the data and used
5-fold cross-validation for training the models, hyperparameter
selection, and testing. In each fold of the cross validation, the
80% of examples from each class were used for training and the
remaining examples were used for testing. To avoid bias, all
testing and validation were performed on the subject level rather
than the eye level without any overlap among train, test, and
validation. Repeating this process several times generated
reproducible outcomes.

Image Preprocessing

As mentioned earlier, OHTS fundus photographs were scanned
from documented fundus photographs (printouts) and saved in
JPEG format. Therefore, fundus photographs from the OHTS
dataset presented additional artifacts compared with common ar-
tifacts present in fundus photographs such as lighting conditions
and effects of different environments and camera settings. Artifacts
such as image deformation and presence of not-related labels on
images are common in images from OHTS dataset. To mitigate
some of the image quality issues, we performed contrast
enhancement and applied Gaussian filtering to all fundus photo-
graphs. The photographs were cropped, normalized, and resized to
224�224�3 (color format).

Deep Learning Model

We used a computationally efficient convolutional neural network
(CNN) architecture, the MobileNetV2,21 to develop our deep
learning models. The trainable parameters in MobileNetV221 are
approximately 1% of the parameters in competing models such
as Inception-v322 and ResNet-150,23 making it a great choice for
problems where computation resources and the training data are
scarce.

The first deep learning model was trained on the “diagnosis
dataset,” in which fundus photographs had been taken on or after
glaucoma onset, and was used to classify a given fundus photo-
graph as glaucomatous or nonglaucomatous (Fig 1). One
challenging aspect of this model is to identify fundus
photographs that had been labeled as glaucoma due to visual
field abnormality without any obvious sign of GON. This makes
our diagnosis model more robust compared with previously
developed models that only identify fundus photographs that
have been labeled as glaucoma due to GON. Likewise, the other
2 models were trained for predicting glaucoma 1 to 3 years and
4 to 7 years before disease onset. To the best of our knowledge,
this is among the first attempts at developing deep learning
models that can predict glaucoma from fundus photographs
several years before clinical functional or structural manifestation
of the signs of glaucoma. Because the fundus photographs in the
prediction models were collected from eyes before glaucoma
onset and therefore without any obvious or clinical signs of
glaucoma, prediction models are more challenging to develop
than the diagnosis model.

Training Strategy

To train models, we used transfer learning. More specifically,
MobileNetV221 was initialized with pretrained weights that were
initially obtained by training the model on ImageNet dataset.
Transfer learning makes the convergence faster and provides a
more effective classification performance when dealing with
training data with small samples. We then fine-tuned the general
knowledge of image interpretation by learning from domain-
specific OHTS fundus photographs.

As discussed previously, all 3 datasets had a greater number of
fundus photographs from the nonglaucoma eyes compared with
glaucoma eyes. On average, 9%, 3.1%, and 2.9% of the fundus
photographs in the diagnosis, first, and second prediction datasets
were from glaucoma eyes, respectively. To address class imbalance
issue, we performed data augmentation and applied balanced data
sampling for batch creation. We performed random horizontal and
vertical flips, and rotations, and randomly changed the hue, satu-
ration, and contrast of the training fundus photographs. After
augmentation, during training, the same number of photographs
from both classes were selected for each mini-batch. A batch size
of 64 images, cross-entropy loss function, and Adam optimizer
(with stochastic regularizer to avoid overfitting) with a fixed
learning rate of 0.001 were used for training the models. To further
avoid overfitting, weight decay of 0.0001 is used on all layers of
the model. All programs were implemented in Python with a
backend of PyTorch.

Deep Learning Interpretation

To identify the regions of the fundus photographs that drive the
deep learning model to assign an image to glaucoma or
3



Figure 3. Activation maps representing regions that are most promising for the deep learning model to make a diagnosis. A-C: fundus photographs from
nonglaucoma eyes. D-F: activation maps of fundus photographs of nonglaucoma eyes (shown in the first row). G-I: fundus photographs from eyes with
glaucoma. J-L: activation maps of fundus photographs of eyes with glaucoma (shown in the third row).
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Figure 4. Receiver operating characteristic curves of the prediction and
diagnosis models. The green curve predicts glaucoma 4 to 7 years before
the onset of the disease, the red curve predicts glaucoma 1 to 3 years before
the onset of the disease, and the blue curve shows diagnosing glaucoma on
or after onset. AUC ¼ area under the curve.
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nonglaucoma groups, we used gradient-weighted class activation
maps.24 The activation maps use the final convolutional layer of
a CNN to produce a coarse localization map24 of the driving
regions of the fundus photographs used for diagnosis.
Although activation maps can be used to validate deep
learning models to verify clinically relevant regions and assess
for diagnosis, they also can be used to discover potentially
novel biomarkers for the disease.

Statistical Analyses

Models were tested using 5-fold cross-validation datasets (inde-
pendent from training datasets) and validated (retested) using the
held-out dataset. The performance of each model was assessed
using area under the curve (AUC). The method of DeLong et al25

was used to compare the AUC of different models. All statistical
analyses were performed in Python.
Results

Approximately 24% of the fundus photographs in the OHTS
dataset had extreme artifacts and were excluded from the study.
A total of 501 eyes were myopic, defined as spherical equivalent
of �1 diopter (D) or more. A total of 195 eyes had myopia equal
or worse than �3 D. Figure 3 shows the activation maps
obtained from 3 glaucomatous and 3 normal fundus images
using the model trained on the diagnosis dataset. As can be
seen, activation maps confirm that the optic cup and rim were
the most important regions in the input fundus photographs of
eyes without glaucoma (Fig 3A-C) and eyes with glaucoma
(Fig 3G-I).

Figure 4 shows the receiver operating characteristic curves of
the 3 deep learning models that were retested using the held-out
subset of the diagnosis, first prediction, and second prediction
models, respectively. The AUC of the deep learning model for
making diagnosis was 0.945 (95% confidence interval [CI],
0.93e0.96). The AUCs of the deep learning model on the first
prediction dataset and second prediction dataset were 0.88 (95%
CI, 0.86e0.91) and 0.77 (95% CI, 0.75e0.78), respectively.

For the task of diagnosis, the AUC was improved to 0.97 (95%
CI, 0.96e0.98) on retesting fundus photographs that were labeled
as glaucoma due to GON. However, as expected, the AUC
decreased to 0.88 (95% CI, 0.86e0.89) when we tested the diag-
nostic deep learning model using the fundus photographs that were
labeled as glaucomatous due to abnormal visual field without
GON.
Discussion

Unlike in previous studies with the emphasis on diagnosis,
we proposed models for prediction of glaucoma before
disease onset. The proposed models showed consistent
performance in predicting glaucoma development 1 to 3
years and 4 to 7 years before the disease onset. There are
several studies that have proposed deep learning for iden-
tifying glaucoma from fundus photographs. However, all
these methods are centered around glaucoma diagnosis from
fundus images that have been collected several years after
the initial onset of the disease, whereas in this study, we
tackled a more challenging task of predicting glaucoma
before manifestation of clinical signs.

Fundus photography provides a simple, inexpensive, and
more portable means for screening in underserved pop-
ulations by nonphysicians, thus improving access to care.
Recently, several deep learning approaches have been pro-
posed for detecting glaucoma from fundus photographs.
Raghavendra et al11 developed a deep learning model
composed of 18 layers trained and tested on
approximately 1500 fundus photographs and were able to
reach an accuracy of 98% for diagnosing glaucoma. The
AUC of the 6-layer deep learning model for glaucoma
diagnosis proposed by Xiangyu et al12 was 0.83 and 0.88 on
2 different datasets, respectively. Li et al13 applied a deep
learning model using Inception-v322 architecture on a
large dataset with approximately 40 000 fundus
photographs and achieved an AUC of approximately 0.99
in detecting referable glaucoma defined based on GON.
Christopher et al14 developed several deep learning
architectures and used a dataset with approximately 14 000
fundus photographs and achieved an AUC of 0.91 in
identifying GON eyes. Nourizifard et al (Norouzifard M,
et al. Automated glaucoma diagnosis using deep and
transfer learning: proposal of a system for clinical testing.
Paper presented at: 2018 International Conference on
Image and Vision Computing New Zealand (IVCNZ).
November 19-21, 2018, Auckland, New Zealand)
developed multiple deep learning models and used
relatively small datasets with total of approximately 500
fundus photographs and achieved an accuracy of 92%.
The reported accuracy of the previous deep learning
models to diagnose glaucoma ranges from 0.83 to 0.98.

Except for the studies by Li et al13 and Christopher
et al,14 the rest of the studies used relatively small datasets
of fundus photographs. Therefore, it is challenging to
generalize their conclusions. However, we have used 66
5
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721 fundus photographs for training and testing models to
develop robust models and generate a reproducible
outcome. Aside from large datasets that are required to
successfully develop deep learning models, validation is
an important step. We have used 3 validation steps: cross-
validation, held-out subset, and visualization of promising
features through activation maps. Therefore, our models are
robust and likely will be generalized to new data.

Although the diagnostic AUC of our model was 0.94, the
diagnostic accuracy of the model proposed by Raghavendra
et al11 was 0.98 and the diagnostic AUC of the model
proposed by Li et al13 was 0.99. The lower AUC of our
model could be due to several reasons. First, fundus
photographs of the OHTS have lower quality compared
with the fundus photographs used in other studies. Second,
approximately 22% of the fundus photographs in the
OHTS were labeled glaucoma due to visual field abnormity
without apparent GON. Therefore, it is more challenging to
identify glaucomatous eyes without GON from fundus
photographs. In fact, our supplemental analysis showed
that the AUC will increase to 0.97 if we use only fundus
photographs that were labeled as glaucoma due to GON.

Our study used a fully automated model to identify
promising glaucoma-induced features (signs), whereas
several previous studies used semi-objective hand-engi-
neered features,26,27 and therefore adopted ad hoc rules. In
fact, we showed that by using fully automated CNNs, an
AUC of 0.88 can be achieved for predicting glaucoma 1
to 3 years before the manifestations of the clinical signs.
Although the human expert may not identify subclinical
changes in the optic nerve, the AUC of 0.88 highlights
that the optic nerve has gone through subtle changes
before the clinical manifestation of the disease. These
subtle changes may be identified by a deep learning model
but not by a human expert.

The OHTS dataset that was used in our study had several
strengths: Participants were recruited from 22 centers across
the United States, thereby reducing the idiosyncrasies of
local databases; reading centers had access to well-trained
certified readers; data were collected, annotated, and cured
very well; disease onset was confirmed by repeating image
and data collection; and end point committees further
confirmed disease onset based on guidelines. Nevertheless,
it had several limitations too. One limitation was poor
quality of the scanned photographs from documented optic
nerve printouts. However, even in the presence of poor
quality and high variability, the diagnostic AUC was 0.94,
which is promising. The other limitation was the smaller
number of eyes with glaucoma eyes compared with non-
glaucoma eyes. However, this is a common problem in
many healthcare domains and not specific to this study. To
address this issue, we used a deep learning model with a
relatively small number of parameters, performed data
augmentation, and conducted data sampling for balanced
batch creation. Another limitation is that the OHTS dataset
was collected from a restricted clinical trial and eyes with
elevated IOP, and therefore did not represent the general
population and real settings. Moreover, only fundus pho-
tographs were used to predict glaucoma, whereas several
6

other risk factors may contribute to glaucoma. Therefore,
future studies with independent datasets from eye clinics
including other glaucoma risk factors may further verify the
proposed models.

In conclusion, despite the limitations, our study showed
that deep learning models were sufficiently sensitive to
predict eyes that will convert to glaucoma from baseline
images. This study is an example of how deep learning
models may allow us to predict preclinical signs of disease,
which may complement other routinely obtained medical
examinations. These methods may open new eras in
developing deep learning models for predicting glaucoma
more accurately and other blinding eye diseases well in
advance of the onset of the disease to identify the at-risk
population. Our study may also identify previously un-
known signatures of the disease development.
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